home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_0 / 0-4-2.tut < prev    next >
Unknown  |  1996-07-11  |  10.3 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 13 28 00 00 27 01 00 00 |TUTOR 06|.(..'...|
|00000010| 53 65 63 74 69 6f 6e 20 | 50 2e 34 20 20 46 61 63 |Section |P.4 Fac|
|00000020| 74 6f 72 69 6e 67 0d 0a | 00 0d 0b 00 0e 65 30 2d |toring..|.....e0-|
|00000030| 34 2d 31 0e 47 75 69 64 | 65 64 20 45 78 61 6d 70 |4-1.Guid|ed Examp|
|00000040| 6c 65 20 20 31 0f 20 20 | 52 65 6d 6f 76 69 6e 67 |le 1. |Removing|
|00000050| 20 43 6f 6d 6d 6f 6e 20 | 46 61 63 74 6f 72 73 0d | Common |Factors.|
|00000060| 0a 00 0d 0b 00 0e 65 30 | 2d 34 2d 32 0e 47 75 69 |......e0|-4-2.Gui|
|00000070| 64 65 64 20 45 78 61 6d | 70 6c 65 20 20 32 0f 20 |ded Exam|ple 2. |
|00000080| 20 46 61 63 74 6f 72 69 | 6e 67 20 74 68 65 20 44 | Factori|ng the D|
|00000090| 69 66 66 65 72 65 6e 63 | 65 20 6f 66 20 54 77 6f |ifferenc|e of Two|
|000000a0| 20 53 71 75 61 72 65 73 | 0d 0a 00 0d 0b 00 0e 65 | Squares|.......e|
|000000b0| 30 2d 34 2d 33 0e 47 75 | 69 64 65 64 20 45 78 61 |0-4-3.Gu|ided Exa|
|000000c0| 6d 70 6c 65 20 20 33 0f | 20 20 46 61 63 74 6f 72 |mple 3.| Factor|
|000000d0| 69 6e 67 20 50 65 72 66 | 65 63 74 20 53 71 75 61 |ing Perf|ect Squa|
|000000e0| 72 65 20 54 72 69 6e 6f | 6d 69 61 6c 73 0d 0a 00 |re Trino|mials...|
|000000f0| 0d 0b 00 0e 65 30 2d 34 | 2d 34 0e 47 75 69 64 65 |....e0-4|-4.Guide|
|00000100| 64 20 45 78 61 6d 70 6c | 65 20 20 34 0f 20 20 46 |d Exampl|e 4. F|
|00000110| 61 63 74 6f 72 69 6e 67 | 20 61 20 54 72 69 6e 6f |actoring| a Trino|
|00000120| 6d 69 61 6c 3a 20 4c 65 | 61 64 69 6e 67 20 43 6f |mial: Le|ading Co|
|00000130| 65 66 66 69 63 69 65 6e | 74 20 69 73 20 31 0d 0a |efficien|t is 1..|
|00000140| 00 0d 0b 00 0e 65 30 2d | 34 2d 35 0e 47 75 69 64 |.....e0-|4-5.Guid|
|00000150| 65 64 20 45 78 61 6d 70 | 6c 65 20 20 35 0f 20 20 |ed Examp|le 5. |
|00000160| 46 61 63 74 6f 72 69 6e | 67 20 61 20 54 72 69 6e |Factorin|g a Trin|
|00000170| 6f 6d 69 61 6c 3a 20 4c | 65 61 64 69 6e 67 20 43 |omial: L|eading C|
|00000180| 6f 65 66 66 69 63 69 65 | 6e 74 20 69 73 20 4e 6f |oefficie|nt is No|
|00000190| 74 20 31 0d 0a 00 0d 0b | 00 0e 65 30 2d 34 2d 36 |t 1.....|..e0-4-6|
|000001a0| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|000001b0| 20 36 0f 20 20 46 61 63 | 74 6f 72 69 6e 67 20 62 | 6. Fac|toring b|
|000001c0| 79 20 47 72 6f 75 70 69 | 6e 67 0d 0a 00 0d 0b 00 |y Groupi|ng......|
|000001d0| 0e 65 30 2d 34 2d 37 0e | 47 75 69 64 65 64 20 45 |.e0-4-7.|Guided E|
|000001e0| 78 61 6d 70 6c 65 20 20 | 37 0f 20 20 46 61 63 74 |xample |7. Fact|
|000001f0| 6f 72 69 6e 67 20 62 79 | 20 47 72 6f 75 70 69 6e |oring by| Groupin|
|00000200| 67 0d 0a 00 0d 0b 00 0e | 65 30 2d 34 2d 38 0e 47 |g.......|e0-4-8.G|
|00000210| 75 69 64 65 64 20 45 78 | 61 6d 70 6c 65 20 20 38 |uided Ex|ample 8|
|00000220| 0f 20 20 46 61 63 74 6f | 72 69 6e 67 20 61 20 54 |. Facto|ring a T|
|00000230| 72 69 6e 6f 6d 69 61 6c | 20 62 79 20 47 72 6f 75 |rinomial| by Grou|
|00000240| 70 69 6e 67 0d 0a 00 0d | 0b 00 0e 69 30 2d 34 2d |ping....|...i0-4-|
|00000250| 31 0e 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |1.Integr|ated Exa|
|00000260| 6d 70 6c 65 20 20 31 0f | 20 20 46 61 63 74 6f 72 |mple 1.| Factor|
|00000270| 69 6e 67 20 53 75 6d 73 | 20 61 6e 64 20 44 69 66 |ing Sums| and Dif|
|00000280| 66 65 72 65 6e 63 65 73 | 20 6f 66 20 43 75 62 65 |ferences| of Cube|
|00000290| 73 0d 0a 00 0d 0b 00 0e | 69 30 2d 34 2d 32 0e 49 |s.......|i0-4-2.I|
|000002a0| 6e 74 65 67 72 61 74 65 | 64 20 45 78 61 6d 70 6c |ntegrate|d Exampl|
|000002b0| 65 20 20 32 0f 20 20 46 | 61 63 74 6f 72 69 6e 67 |e 2. F|actoring|
|000002c0| 20 43 6f 6d 70 6c 65 74 | 65 6c 79 0d 0a 00 53 65 | Complet|ely...Se|
|000002d0| 63 74 69 6f 6e 20 50 2e | 34 20 20 46 61 63 74 6f |ction P.|4 Facto|
|000002e0| 72 69 6e 67 0d 0b 00 46 | 61 63 74 6f 72 20 6f 75 |ring...F|actor ou|
|000002f0| 74 20 74 68 65 20 63 6f | 6d 6d 6f 6e 20 66 61 63 |t the co|mmon fac|
|00000300| 74 6f 72 20 69 6e 20 65 | 61 63 68 20 65 78 70 72 |tor in e|ach expr|
|00000310| 65 73 73 69 6f 6e 2e 0d | 0a 00 20 20 20 20 20 20 |ession..|.. |
|00000320| 20 11 32 33 20 20 20 20 | 20 32 20 20 20 20 20 20 | .23 | 2 |
|00000330| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 32 0d 0b | | 2..|
|00000350| 00 11 31 28 61 29 20 20 | 33 11 33 78 20 20 11 31 |..1(a) |3.3x .1|
|00000360| 2b 20 39 11 33 78 20 20 | 11 31 2b 20 32 37 11 33 |+ 9.3x |.1+ 27.3|
|00000370| 78 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |x | |
|00000380| 20 11 31 28 62 29 20 20 | 32 28 11 33 78 20 11 31 | .1(b) |2(.3x .1|
|00000390| 2d 20 32 29 20 20 2b 20 | 28 11 33 78 20 11 31 2d |- 2) + |(.3x .1-|
|000003a0| 20 32 29 0d 0a 00 0d 0b | 00 13 12 31 53 4f 4c 55 | 2).....|...1SOLU|
|000003b0| 54 49 4f 4e 12 30 0d 0a | 00 0d 0b 00 61 29 20 20 |TION.0..|....a) |
|000003c0| 45 61 63 68 20 74 65 72 | 6d 20 6f 66 20 74 68 69 |Each ter|m of thi|
|000003d0| 73 20 70 6f 6c 79 6e 6f | 6d 69 61 6c 20 68 61 73 |s polyno|mial has|
|000003e0| 20 33 11 33 78 20 11 31 | 61 73 20 61 20 63 6f 6d | 3.3x .1|as a com|
|000003f0| 6d 6f 6e 20 66 61 63 74 | 6f 72 2e 20 20 54 68 65 |mon fact|or. The|
|00000400| 72 65 66 6f 72 65 2c 20 | 77 65 0d 0a 00 20 20 20 |refore, |we... |
|00000410| 20 63 61 6e 20 66 61 63 | 74 6f 72 20 74 68 65 20 | can fac|tor the |
|00000420| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 20 61 73 20 66 6f |polynomi|al as fo|
|00000430| 6c 6c 6f 77 73 2e 0d 0a | 00 20 20 20 20 20 20 20 |llows...|. |
|00000440| 20 20 20 20 20 20 20 20 | 20 20 11 32 33 20 20 20 | | .23 |
|00000450| 20 20 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00000460| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00000470| 20 20 20 11 31 33 11 33 | 78 20 20 11 31 2b 20 39 | .13.3|x .1+ 9|
|00000480| 11 33 78 20 20 11 31 2b | 20 32 37 11 33 78 20 11 |.3x .1+| 27.3x .|
|00000490| 31 3d 20 33 11 33 78 11 | 31 28 11 33 78 20 11 31 |1= 3.3x.|1(.3x .1|
|000004a0| 29 20 2b 20 33 11 33 78 | 11 31 28 33 11 33 78 11 |) + 3.3x|.1(3.3x.|
|000004b0| 31 29 20 2b 20 33 11 33 | 78 11 31 28 39 29 13 0d |1) + 3.3|x.1(9)..|
|000004c0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000004d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000004e0| 20 20 20 20 20 20 20 11 | 32 32 0d 0b 00 20 20 20 | .|22... |
|000004f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000500| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 31 3d 20 | | .1= |
|00000510| 33 11 33 78 11 31 28 11 | 33 78 20 20 11 31 2b 20 |3.3x.1(.|3x .1+ |
|00000520| 33 11 33 78 20 11 31 2b | 20 39 29 13 0d 0a 00 0d |3.3x .1+| 9).....|
|00000530| 0b 00 62 29 20 20 49 6e | 20 74 68 69 73 20 63 61 |..b) In| this ca|
|00000540| 73 65 2c 20 74 68 65 20 | 62 69 6e 6f 6d 69 61 6c |se, the |binomial|
|00000550| 20 66 61 63 74 6f 72 20 | 28 11 33 78 20 11 31 2d | factor |(.3x .1-|
|00000560| 20 32 29 20 69 73 20 63 | 6f 6d 6d 6f 6e 20 74 6f | 2) is c|ommon to|
|00000570| 20 62 6f 74 68 20 74 65 | 72 6d 73 2e 0d 0a 00 20 | both te|rms.... |
|00000580| 20 20 20 54 68 65 72 65 | 66 6f 72 65 2c 20 77 65 | There|fore, we|
|00000590| 20 63 61 6e 20 66 61 63 | 74 6f 72 20 74 68 65 20 | can fac|tor the |
|000005a0| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 20 61 73 20 66 6f |polynomi|al as fo|
|000005b0| 6c 6c 6f 77 73 2e 0d 0a | 00 20 20 20 20 20 20 20 |llows...|. |
|000005c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 0d | | .22.|
|000005d0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 11 31 32 |.. | .12|
|000005e0| 28 11 33 78 20 11 31 2d | 20 32 29 20 20 2b 20 28 |(.3x .1-| 2) + (|
|000005f0| 11 33 78 20 11 31 2d 20 | 32 29 20 3d 20 28 11 33 |.3x .1- |2) = (.3|
|00000600| 78 20 11 31 2d 20 32 29 | 5b 32 28 11 33 78 20 11 |x .1- 2)|[2(.3x .|
|00000610| 31 2d 20 32 29 20 2b 20 | 31 5d 13 0d 0a 00 0d 0b |1- 2) + |1]......|
|00000620| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000630| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000640| 3d 20 28 11 33 78 20 11 | 31 2d 20 32 29 28 32 11 |= (.3x .|1- 2)(2.|
|00000650| 33 78 20 11 31 2d 20 34 | 20 2b 20 31 29 13 0d 0a |3x .1- 4| + 1)...|
|00000660| 00 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00000670| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000680| 20 20 20 3d 20 28 11 33 | 78 20 11 31 2d 20 32 29 | = (.3|x .1- 2)|
|00000690| 28 32 11 33 78 20 11 31 | 2d 20 33 29 0d 0a 00 53 |(2.3x .1|- 3)...S|
|000006a0| 65 63 74 69 6f 6e 20 50 | 2e 34 20 20 46 61 63 74 |ection P|.4 Fact|
|000006b0| 6f 72 69 6e 67 0d 0b 00 | 46 61 63 74 6f 72 20 74 |oring...|Factor t|
|000006c0| 68 65 20 64 69 66 66 65 | 72 65 6e 63 65 20 6f 66 |he diffe|rence of|
|000006d0| 20 74 77 6f 20 73 71 75 | 61 72 65 73 2e 0d 0a 00 | two squ|ares....|
|000006e0| 20 20 20 20 20 20 20 20 | 11 32 32 20 20 20 20 20 | |.22 |
|000006f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000700| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000710| 20 20 20 32 0d 0b 00 11 | 31 28 61 29 20 20 32 35 | 2....|1(a) 25|
|00000720| 11 33 78 20 20 11 31 2d | 20 34 20 20 20 20 20 20 |.3x .1-| 4 |
|00000730| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 28 62 | | (b|
|00000740| 29 20 20 31 20 2d 20 28 | 11 33 78 20 11 31 2b 20 |) 1 - (|.3x .1+ |
|00000750| 11 33 7a 11 31 29 0d 0a | 00 0d 0b 00 13 12 31 53 |.3z.1)..|......1S|
|00000760| 4f 4c 55 54 49 4f 4e 12 | 30 0d 0a 00 0d 0b 00 49 |OLUTION.|0......I|
|00000770| 6e 20 62 6f 74 68 20 63 | 61 73 65 73 2c 20 77 65 |n both c|ases, we|
|00000780| 20 75 73 65 20 74 68 65 | 20 66 6f 72 6d 75 6c 61 | use the| formula|
|00000790| 20 66 6f 72 20 74 68 65 | 20 64 69 66 66 65 72 65 | for the| differe|
|000007a0| 6e 63 65 20 6f 66 20 74 | 77 6f 20 73 71 75 61 72 |nce of t|wo squar|
|000007b0| 65 73 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |es... | |
|000007c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 20 | | .22 |
|000007d0| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 2... | |
|000007e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 75 | | .3u|
|000007f0| 20 20 11 31 2d 20 11 33 | 76 20 20 11 31 3d 20 28 | .1- .3|v .1= (|
|00000800| 11 33 75 20 11 31 2b 20 | 11 33 76 11 31 29 28 11 |.3u .1+ |.3v.1)(.|
|00000810| 33 75 20 11 31 2d 20 11 | 33 76 11 31 29 2e 13 0d |3u .1- .|3v.1)...|
|00000820| 0a 00 0d 0b 00 61 29 20 | 20 48 65 72 65 20 77 65 |.....a) | Here we|
|00000830| 20 68 61 76 65 20 11 33 | 75 20 11 31 3d 20 35 11 | have .3|u .1= 5.|
|00000840| 33 78 20 11 31 61 6e 64 | 20 11 33 76 20 11 31 3d |3x .1and| .3v .1=|
|00000850| 20 32 2e 13 0d 0a 00 20 | 20 20 20 54 68 65 72 65 | 2..... | There|
|00000860| 66 6f 72 65 2c 20 77 65 | 20 66 61 63 74 6f 72 20 |fore, we| factor |
|00000870| 74 68 65 20 70 6f 6c 79 | 6e 6f 6d 69 61 6c 20 61 |the poly|nomial a|
|00000880| 73 20 66 6f 6c 6c 6f 77 | 73 2e 0d 0a 00 20 20 20 |s follow|s.... |
|00000890| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000008a0| 11 32 32 20 20 20 20 20 | 20 20 20 20 20 20 32 20 |.22 | 2 |
|000008b0| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 2... | |
|000008c0| 20 20 20 20 20 20 20 11 | 31 32 35 11 33 78 20 20 | .|125.3x |
|000008d0| 11 31 2d 20 34 20 3d 20 | 28 35 11 33 78 11 31 29 |.1- 4 = |(5.3x.1)|
|000008e0| 20 20 2d 20 32 20 13 0d | 0a 00 0d 0b 00 20 20 20 | - 2 ..|..... |
|000008f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000900| 20 20 20 20 20 20 3d 20 | 28 35 11 33 78 20 11 31 | = |(5.3x .1|
|00000910| 2b 20 32 29 28 35 11 33 | 78 20 11 31 2d 20 32 29 |+ 2)(5.3|x .1- 2)|
|00000920| 13 0d 0a 00 0d 0b 00 62 | 29 20 20 49 6e 20 74 68 |.......b|) In th|
|00000930| 69 73 20 63 61 73 65 2c | 20 77 65 20 68 61 76 65 |is case,| we have|
|00000940| 20 11 33 75 20 11 31 3d | 20 31 20 61 6e 64 20 11 | .3u .1=| 1 and .|
|00000950| 33 76 20 11 31 3d 20 11 | 33 78 20 11 31 2b 20 11 |3v .1= .|3x .1+ .|
|00000960| 33 7a 11 31 2e 13 0d 0a | 00 20 20 20 20 54 68 65 |3z.1....|. The|
|00000970| 72 65 66 6f 72 65 2c 20 | 77 65 20 66 61 63 74 6f |refore, |we facto|
|00000980| 72 20 74 68 65 20 70 6f | 6c 79 6e 6f 6d 69 61 6c |r the po|lynomial|
|00000990| 20 61 73 20 66 6f 6c 6c | 6f 77 73 2e 0d 0a 00 20 | as foll|ows.... |
|000009a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009b0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|000009c0| 20 20 20 20 20 20 20 20 | 11 31 31 20 2d 20 28 11 | |.11 - (.|
|000009d0| 33 78 20 11 31 2b 20 11 | 33 7a 11 31 29 20 20 3d |3x .1+ .|3z.1) =|
|000009e0| 20 5b 31 20 2b 20 28 11 | 33 78 20 11 31 2b 20 11 | [1 + (.|3x .1+ .|
|000009f0| 33 7a 11 31 29 5d 5b 31 | 20 2d 20 28 11 33 78 20 |3z.1)][1| - (.3x |
|00000a00| 11 31 2b 20 11 33 7a 11 | 31 29 5d 13 0d 0a 00 0d |.1+ .3z.|1)].....|
|00000a10| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000a20| 20 20 20 20 20 20 20 20 | 20 20 20 3d 20 28 31 20 | | = (1 |
|00000a30| 2b 20 11 33 78 20 11 31 | 2b 20 11 33 7a 11 31 29 |+ .3x .1|+ .3z.1)|
|00000a40| 28 31 20 2d 20 11 33 78 | 20 11 31 2d 20 11 33 7a |(1 - .3x| .1- .3z|
|00000a50| 11 31 29 0d 0a 00 53 65 | 63 74 69 6f 6e 20 50 2e |.1)...Se|ction P.|
|00000a60| 34 20 20 46 61 63 74 6f | 72 69 6e 67 0d 0b 00 46 |4 Facto|ring...F|
|00000a70| 61 63 74 6f 72 20 74 68 | 65 20 67 69 76 65 6e 20 |actor th|e given |
|00000a80| 70 65 72 66 65 63 74 20 | 73 71 75 61 72 65 20 74 |perfect |square t|
|00000a90| 72 69 6e 6f 6d 69 61 6c | 2e 0d 0a 00 20 20 20 20 |rinomial|.... |
|00000aa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ab0| 20 20 20 20 20 11 32 32 | 0d 0b 00 20 20 20 20 20 | .22|... |
|00000ac0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ad0| 20 20 11 31 34 11 33 78 | 20 20 11 31 2b 20 31 32 | .14.3x| .1+ 12|
|00000ae0| 11 33 78 20 11 31 2b 20 | 39 0d 0a 00 0d 0b 00 13 |.3x .1+ |9.......|
|00000af0| 12 31 53 4f 4c 55 54 49 | 4f 4e 12 30 0d 0a 00 20 |.1SOLUTI|ON.0... |
|00000b00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b20| 20 11 32 32 20 20 20 20 | 20 20 20 20 20 20 32 0d | .22 | 2.|
|00000b30| 0b 00 11 31 46 69 72 73 | 74 20 77 65 20 6d 75 73 |...1Firs|t we mus|
|00000b40| 74 20 72 65 63 6f 67 6e | 69 7a 65 20 74 68 65 20 |t recogn|ize the |
|00000b50| 66 6f 72 6d 20 11 33 75 | 20 20 11 31 2b 20 32 11 |form .3u| .1+ 2.|
|00000b60| 33 75 76 20 11 31 2b 20 | 11 33 76 20 20 11 31 77 |3uv .1+ |.3v .1w|
|00000b70| 68 65 72 65 20 11 33 75 | 20 11 31 3d 20 32 11 33 |here .3u| .1= 2.3|
|00000b80| 78 20 11 31 61 6e 64 20 | 11 33 76 20 11 31 3d 20 |x .1and |.3v .1= |
|00000b90| 33 2e 13 0d 0a 00 0d 0b | 00 54 68 65 6e 20 75 73 |3.......|.Then us|
|00000ba0| 69 6e 67 20 74 68 65 20 | 66 6f 72 6d 75 6c 61 0d |ing the |formula.|
|00000bb0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000bc0| 20 11 32 32 20 20 20 20 | 20 20 20 20 20 20 32 20 | .22 | 2 |
|00000bd0| 20 20 20 20 20 20 20 20 | 20 32 0d 0b 00 20 20 20 | | 2... |
|00000be0| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 75 20 20 | | .3u |
|00000bf0| 11 31 2b 20 32 11 33 75 | 76 20 11 31 2b 20 11 33 |.1+ 2.3u|v .1+ .3|
|00000c00| 76 20 20 11 31 3d 20 28 | 11 33 75 20 11 31 2b 20 |v .1= (|.3u .1+ |
|00000c10| 11 33 76 11 31 29 0d 0a | 00 0d 0b 00 77 65 20 68 |.3v.1)..|....we h|
|00000c20| 61 76 65 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |ave... | |
|00000c30| 20 20 20 20 20 20 11 32 | 32 20 20 20 20 20 20 20 | .2|2 |
|00000c40| 20 20 20 20 20 20 20 20 | 20 20 32 20 20 20 20 20 | | 2 |
|00000c50| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 0d 0b 00 | | 2...|
|00000c60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|00000c70| 34 11 33 78 20 20 11 31 | 2b 20 31 32 11 33 78 20 |4.3x .1|+ 12.3x |
|00000c80| 11 31 2b 20 39 20 3d 20 | 28 32 11 33 78 11 31 29 |.1+ 9 = |(2.3x.1)|
|00000c90| 20 20 2b 20 32 28 32 11 | 33 78 11 31 29 28 33 29 | + 2(2.|3x.1)(3)|
|00000ca0| 20 2b 20 28 33 29 20 13 | 0d 0a 00 0d 0b 00 20 20 | + (3) .|...... |
|00000cb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000cc0| 20 20 20 20 20 20 20 20 | 20 20 3d 20 28 32 11 33 | | = (2.3|
|00000cd0| 78 20 11 31 2b 20 33 29 | 28 32 11 33 78 20 11 31 |x .1+ 3)|(2.3x .1|
|00000ce0| 2b 20 33 29 13 0d 0a 00 | 20 20 20 20 20 20 20 20 |+ 3)....| |
|00000cf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00000d10| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00000d20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d30| 11 31 3d 20 28 32 11 33 | 78 20 11 31 2b 20 33 29 |.1= (2.3|x .1+ 3)|
|00000d40| 20 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 50 2e 34 | ....Sec|tion P.4|
|00000d50| 20 20 46 61 63 74 6f 72 | 69 6e 67 0d 0b 00 20 20 | Factor|ing... |
|00000d60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d70| 20 20 20 20 11 32 32 0d | 0b 00 11 31 46 61 63 74 | .22.|...1Fact|
|00000d80| 6f 72 20 74 68 65 20 74 | 72 69 6e 6f 6d 69 61 6c |or the t|rinomial|
|00000d90| 20 11 33 78 20 20 11 31 | 2d 20 31 31 11 33 78 20 | .3x .1|- 11.3x |
|00000da0| 11 31 2b 20 32 34 2e 0d | 0a 00 0d 0a 00 13 12 31 |.1+ 24..|.......1|
|00000db0| 53 4f 4c 55 54 49 4f 4e | 12 30 0d 0a 00 20 20 20 |SOLUTION|.0... |
|00000dc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000dd0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 20 20 | | .22 |
|00000de0| 20 20 20 20 20 20 20 20 | 20 20 20 32 0d 0b 00 11 | | 2....|
|00000df0| 31 46 6f 72 20 74 68 69 | 73 20 74 72 69 6e 6f 6d |1For thi|s trinom|
|00000e00| 69 61 6c 2c 20 77 65 20 | 68 61 76 65 20 11 33 61 |ial, we |have .3a|
|00000e10| 78 20 20 11 31 2b 20 11 | 33 62 78 20 11 31 2b 20 |x .1+ .|3bx .1+ |
|00000e20| 11 33 63 20 11 31 3d 20 | 11 33 78 20 20 11 31 2d |.3c .1= |.3x .1-|
|00000e30| 20 31 31 11 33 78 20 11 | 31 2b 20 32 34 2e 20 20 | 11.3x .|1+ 24. |
|00000e40| 54 68 75 73 2c 20 11 33 | 61 20 11 31 3d 20 31 2c |Thus, .3|a .1= 1,|
|00000e50| 20 0d 0a 00 11 33 62 20 | 11 31 3d 20 2d 31 31 2c | ....3b |.1= -11,|
|00000e60| 20 61 6e 64 20 11 33 63 | 20 11 31 3d 20 32 34 2e | and .3c| .1= 24.|
|00000e70| 13 0d 0a 00 0d 0b 00 53 | 69 6e 63 65 20 11 33 62 |.......S|ince .3b|
|00000e80| 20 11 31 69 73 20 6e 65 | 67 61 74 69 76 65 20 61 | .1is ne|gative a|
|00000e90| 6e 64 20 11 33 63 20 11 | 31 69 73 20 70 6f 73 69 |nd .3c .|1is posi|
|00000ea0| 74 69 76 65 2c 20 62 6f | 74 68 20 66 61 63 74 6f |tive, bo|th facto|
|00000eb0| 72 73 20 6f 66 20 32 34 | 20 6d 75 73 74 20 62 65 |rs of 24| must be|
|00000ec0| 20 6e 65 67 61 74 69 76 | 65 2e 0d 0a 00 54 68 61 | negativ|e....Tha|
|00000ed0| 74 20 69 73 2c 20 32 34 | 20 3d 20 28 2d 31 29 28 |t is, 24| = (-1)(|
|00000ee0| 2d 32 34 29 2c 20 32 34 | 20 3d 20 28 2d 32 29 28 |-24), 24| = (-2)(|
|00000ef0| 2d 31 32 29 2c 20 32 34 | 20 3d 20 28 2d 33 29 28 |-12), 24| = (-3)(|
|00000f00| 2d 38 29 2c 20 6f 72 20 | 32 34 20 3d 20 28 2d 34 |-8), or |24 = (-4|
|00000f10| 29 28 2d 36 29 2e 13 0d | 0a 00 0d 0b 00 54 68 65 |)(-6)...|.....The|
|00000f20| 72 65 66 6f 72 65 2c 20 | 74 68 65 20 70 6f 73 73 |refore, |the poss|
|00000f30| 69 62 6c 65 20 66 61 63 | 74 6f 72 69 7a 61 74 69 |ible fac|torizati|
|00000f40| 6f 6e 73 20 61 72 65 0d | 0a 00 0d 0b 00 20 20 28 |ons are.|..... (|
|00000f50| 11 33 78 20 11 31 2d 20 | 31 29 28 11 33 78 20 11 |.3x .1- |1)(.3x .|
|00000f60| 31 2d 20 32 34 29 2c 20 | 20 28 11 33 78 20 11 31 |1- 24), | (.3x .1|
|00000f70| 2d 20 32 29 28 11 33 78 | 20 11 31 2d 20 31 32 29 |- 2)(.3x| .1- 12)|
|00000f80| 2c 20 20 28 11 33 78 20 | 11 31 2d 20 33 29 28 11 |, (.3x |.1- 3)(.|
|00000f90| 33 78 20 11 31 2d 20 38 | 29 2c 20 20 61 6e 64 20 |3x .1- 8|), and |
|00000fa0| 20 28 11 33 78 20 11 31 | 2d 20 34 29 28 11 33 78 | (.3x .1|- 4)(.3x|
|00000fb0| 20 11 31 2d 20 36 29 2e | 13 0d 0a 00 0d 0b 00 54 | .1- 6).|.......T|
|00000fc0| 65 73 74 69 6e 67 20 74 | 68 65 20 6d 69 64 64 6c |esting t|he middl|
|00000fd0| 65 20 74 65 72 6d 2c 20 | 77 65 20 66 69 6e 64 20 |e term, |we find |
|00000fe0| 74 68 65 20 63 6f 72 72 | 65 63 74 20 66 61 63 74 |the corr|ect fact|
|00000ff0| 6f 72 69 7a 61 74 69 6f | 6e 20 74 6f 20 62 65 0d |orizatio|n to be.|
|00001000| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001010| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|00001020| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001030| 33 78 20 20 11 31 2d 20 | 31 31 11 33 78 20 11 31 |3x .1- |11.3x .1|
|00001040| 2b 20 32 34 20 3d 20 28 | 11 33 78 20 11 31 2d 20 |+ 24 = (|.3x .1- |
|00001050| 33 29 28 11 33 78 20 11 | 31 2d 20 38 29 2e 0d 0a |3)(.3x .|1- 8)...|
|00001060| 00 53 65 63 74 69 6f 6e | 20 50 2e 34 20 20 46 61 |.Section| P.4 Fa|
|00001070| 63 74 6f 72 69 6e 67 0d | 0b 00 20 20 20 20 20 20 |ctoring.|.. |
|00001080| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001090| 20 11 32 32 0d 0b 00 11 | 31 46 61 63 74 6f 72 20 | .22....|1Factor |
|000010a0| 74 68 65 20 74 72 69 6e | 6f 6d 69 61 6c 20 32 11 |the trin|omial 2.|
|000010b0| 33 78 20 20 11 31 2b 20 | 35 11 33 78 20 11 31 2d |3x .1+ |5.3x .1-|
|000010c0| 20 33 2e 0d 0a 00 0d 0a | 00 13 12 31 53 4f 4c 55 | 3......|...1SOLU|
|000010d0| 54 49 4f 4e 12 30 0d 0a | 00 20 20 20 20 20 20 20 |TION.0..|. |
|000010e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010f0| 20 20 20 20 20 20 20 11 | 32 32 20 20 20 20 20 20 | .|22 |
|00001100| 20 20 20 20 20 20 20 20 | 32 0d 0b 00 11 31 46 6f | |2....1Fo|
|00001110| 72 20 74 68 69 73 20 74 | 72 69 6e 6f 6d 69 61 6c |r this t|rinomial|
|00001120| 2c 20 77 65 20 68 61 76 | 65 20 11 33 61 78 20 20 |, we hav|e .3ax |
|00001130| 11 31 2b 20 11 33 62 78 | 20 11 31 2b 20 11 33 63 |.1+ .3bx| .1+ .3c|
|00001140| 20 11 31 3d 20 32 11 33 | 78 20 20 11 31 2b 20 35 | .1= 2.3|x .1+ 5|
|00001150| 11 33 78 20 11 31 2d 20 | 33 2e 20 20 54 68 75 73 |.3x .1- |3. Thus|
|00001160| 2c 20 11 33 61 20 11 31 | 3d 20 32 2c 20 11 33 62 |, .3a .1|= 2, .3b|
|00001170| 20 11 31 3d 20 35 2c 0d | 0a 00 61 6e 64 20 11 33 | .1= 5,.|..and .3|
|00001180| 63 20 11 31 3d 20 2d 33 | 2e 13 0d 0a 00 0d 0b 00 |c .1= -3|........|
|00001190| 53 69 6e 63 65 20 74 68 | 65 20 6c 61 73 74 20 74 |Since th|e last t|
|000011a0| 65 72 6d 20 69 73 20 6e | 65 67 61 74 69 76 65 2c |erm is n|egative,|
|000011b0| 20 77 65 20 6b 6e 6f 77 | 20 74 68 61 74 20 74 68 | we know| that th|
|000011c0| 65 20 66 61 63 74 6f 72 | 73 20 6f 66 20 2d 33 20 |e factor|s of -3 |
|000011d0| 6d 75 73 74 20 68 61 76 | 65 20 0d 0a 00 75 6e 6c |must hav|e ...unl|
|000011e0| 69 6b 65 20 73 69 67 6e | 73 2e 13 0d 0a 00 0d 0b |ike sign|s.......|
|000011f0| 00 55 73 69 6e 67 20 74 | 68 69 73 20 69 6e 66 6f |.Using t|his info|
|00001200| 72 6d 61 74 69 6f 6e 2c | 20 77 65 20 64 65 74 65 |rmation,| we dete|
|00001210| 72 6d 69 6e 65 20 74 68 | 65 20 70 6f 73 73 69 62 |rmine th|e possib|
|00001220| 6c 65 20 66 61 63 74 6f | 72 69 7a 61 74 69 6f 6e |le facto|rization|
|00001230| 73 2e 0d 0a 00 0d 0b 00 | 20 28 32 11 33 78 20 11 |s.......| (2.3x .|
|00001240| 31 2b 20 31 29 28 11 33 | 78 20 11 31 2d 20 33 29 |1+ 1)(.3|x .1- 3)|
|00001250| 20 20 20 20 20 28 32 11 | 33 78 20 11 31 2b 20 33 | (2.|3x .1+ 3|
|00001260| 29 28 11 33 78 20 11 31 | 2d 20 31 29 20 20 20 20 |)(.3x .1|- 1) |
|00001270| 20 28 32 11 33 78 20 11 | 31 2d 20 31 29 28 11 33 | (2.3x .|1- 1)(.3|
|00001280| 78 20 11 31 2b 20 33 29 | 20 20 20 20 20 28 32 11 |x .1+ 3)| (2.|
|00001290| 33 78 20 11 31 2d 20 33 | 29 28 11 33 78 20 11 31 |3x .1- 3|)(.3x .1|
|000012a0| 2b 20 31 29 13 0d 0a 00 | 0d 0b 00 54 65 73 74 69 |+ 1)....|...Testi|
|000012b0| 6e 67 20 74 68 65 20 6d | 69 64 64 6c 65 20 74 65 |ng the m|iddle te|
|000012c0| 72 6d 2c 20 77 65 20 66 | 69 6e 64 20 74 68 65 20 |rm, we f|ind the |
|000012d0| 63 6f 72 72 65 63 74 20 | 66 61 63 74 6f 72 69 7a |correct |factoriz|
|000012e0| 61 74 69 6f 6e 20 74 6f | 20 62 65 0d 0a 00 20 20 |ation to| be... |
|000012f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001300| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|00001310| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001320| 20 20 11 31 32 11 33 78 | 20 20 11 31 2b 20 35 11 | .12.3x| .1+ 5.|
|00001330| 33 78 20 11 31 2d 20 33 | 20 3d 20 28 32 11 33 78 |3x .1- 3| = (2.3x|
|00001340| 20 11 31 2d 20 31 29 28 | 11 33 78 20 11 31 2b 20 | .1- 1)(|.3x .1+ |
|00001350| 33 29 2e 0d 0a 00 53 65 | 63 74 69 6f 6e 20 50 2e |3)....Se|ction P.|
|00001360| 34 20 20 46 61 63 74 6f | 72 69 6e 67 0d 0b 00 20 |4 Facto|ring... |
|00001370| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001380| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001390| 32 32 20 20 20 20 33 0d | 0b 00 11 31 46 61 63 74 |22 3.|...1Fact|
|000013a0| 6f 72 20 74 68 65 20 70 | 6f 6c 79 6e 6f 6d 69 61 |or the p|olynomia|
|000013b0| 6c 20 33 20 2b 20 11 33 | 78 20 11 31 2d 20 33 11 |l 3 + .3|x .1- 3.|
|000013c0| 33 78 20 20 11 31 2d 20 | 11 33 78 20 20 11 31 62 |3x .1- |.3x .1b|
|000013d0| 79 20 67 72 6f 75 70 69 | 6e 67 2e 0d 0a 00 0d 0a |y groupi|ng......|
|000013e0| 00 13 12 31 53 4f 4c 55 | 54 49 4f 4e 12 30 0d 0a |...1SOLU|TION.0..|
|000013f0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001400| 20 20 20 11 32 32 20 20 | 20 20 33 20 20 20 20 20 | .22 | 3 |
|00001410| 20 20 20 20 20 20 20 20 | 20 20 20 32 20 20 20 20 | | 2 |
|00001420| 33 0d 0b 00 20 20 20 20 | 20 20 20 20 11 31 33 20 |3... | .13 |
|00001430| 2b 20 11 33 78 20 11 31 | 2d 20 33 11 33 78 20 20 |+ .3x .1|- 3.3x |
|00001440| 11 31 2d 20 11 33 78 20 | 20 11 31 3d 20 28 33 20 |.1- .3x | .1= (3 |
|00001450| 2b 20 11 33 78 11 31 29 | 20 2d 20 28 33 11 33 78 |+ .3x.1)| - (3.3x|
|00001460| 20 20 11 31 2b 20 11 33 | 78 20 11 31 29 20 20 20 | .1+ .3|x .1) |
|00001470| 20 20 20 20 20 20 12 31 | 11 32 47 72 6f 75 70 20 | .1|.2Group |
|00001480| 74 65 72 6d 73 11 31 12 | 30 13 0d 0a 00 0d 0a 00 |terms.1.|0.......|
|00001490| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014b0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|000014c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014d0| 20 20 20 20 20 11 31 3d | 20 28 33 20 2b 20 11 33 | .1=| (3 + .3|
|000014e0| 78 11 31 29 20 2d 20 11 | 33 78 20 11 31 28 33 20 |x.1) - .|3x .1(3 |
|000014f0| 2b 20 11 33 78 20 11 31 | 29 20 20 20 20 20 20 20 |+ .3x .1|) |
|00001500| 20 20 12 31 11 32 46 61 | 63 74 6f 72 20 67 72 6f | .1.2Fa|ctor gro|
|00001510| 75 70 73 11 31 12 30 13 | 0d 0a 00 0d 0a 00 20 20 |ups.1.0.|...... |
|00001520| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001530| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001540| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|00001550| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001560| 20 20 20 20 20 11 31 3d | 20 28 33 20 2b 20 11 33 | .1=| (3 + .3|
|00001570| 78 11 31 29 28 31 20 2d | 20 11 33 78 20 11 31 29 |x.1)(1 -| .3x .1)|
|00001580| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 12 31 | | .1|
|00001590| 11 32 52 65 6d 6f 76 65 | 20 63 6f 6d 6d 6f 6e 20 |.2Remove| common |
|000015a0| 62 69 6e 6f 6d 69 61 6c | 11 31 12 30 0d 0a 00 20 |binomial|.1.0... |
|000015b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015e0| 20 20 20 20 20 20 20 12 | 31 11 32 66 61 63 74 6f | .|1.2facto|
|000015f0| 72 11 31 12 30 20 20 20 | 13 0d 0a 00 0d 0b 00 20 |r.1.0 |....... |
|00001600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001610| 20 20 20 20 20 20 20 20 | 3d 20 28 33 20 2b 20 11 | |= (3 + .|
|00001620| 33 78 11 31 29 28 31 20 | 2b 20 11 33 78 11 31 29 |3x.1)(1 |+ .3x.1)|
|00001630| 28 31 20 2d 20 11 33 78 | 11 31 29 20 20 20 20 20 |(1 - .3x|.1) |
|00001640| 20 20 20 12 31 11 32 46 | 61 63 74 6f 72 20 64 69 | .1.2F|actor di|
|00001650| 66 66 65 72 65 6e 63 65 | 20 6f 66 11 31 12 30 20 |fference| of.1.0 |
|00001660| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001670| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001680| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001690| 20 20 20 20 20 20 20 20 | 20 20 20 12 31 11 32 74 | | .1.2t|
|000016a0| 77 6f 20 73 71 75 61 72 | 65 73 11 31 12 30 0d 0a |wo squar|es.1.0..|
|000016b0| 00 53 65 63 74 69 6f 6e | 20 50 2e 34 20 20 46 61 |.Section| P.4 Fa|
|000016c0| 63 74 6f 72 69 6e 67 0d | 0b 00 20 20 20 20 20 20 |ctoring.|.. |
|000016d0| 20 20 20 11 32 34 20 20 | 20 20 20 33 0d 0b 00 11 | .24 | 3....|
|000016e0| 31 46 61 63 74 6f 72 20 | 32 11 33 79 20 20 11 31 |1Factor |2.3y .1|
|000016f0| 2d 20 38 11 33 79 20 20 | 11 31 2b 20 33 11 33 79 |- 8.3y |.1+ 3.3y|
|00001700| 20 11 31 2d 20 31 32 2e | 0d 0a 00 0d 0a 00 13 12 | .1- 12.|........|
|00001710| 31 53 4f 4c 55 54 49 4f | 4e 12 30 0d 0a 00 20 20 |1SOLUTIO|N.0... |
|00001720| 11 32 34 20 20 20 20 20 | 33 20 20 20 20 20 20 20 |.24 |3 |
|00001730| 20 20 20 20 20 20 20 20 | 20 34 20 20 20 20 20 33 | | 4 3|
|00001740| 0d 0b 00 11 31 32 11 33 | 79 20 20 11 31 2d 20 38 |....12.3|y .1- 8|
|00001750| 11 33 79 20 20 11 31 2b | 20 33 11 33 79 20 11 31 |.3y .1+| 3.3y .1|
|00001760| 2d 20 31 32 20 3d 20 28 | 32 11 33 79 20 20 11 31 |- 12 = (|2.3y .1|
|00001770| 2d 20 38 11 33 79 20 11 | 31 29 20 2b 20 28 33 11 |- 8.3y .|1) + (3.|
|00001780| 33 79 20 11 31 2d 20 31 | 32 29 20 20 20 20 20 20 |3y .1- 1|2) |
|00001790| 20 20 20 20 20 12 31 11 | 32 47 72 6f 75 70 20 74 | .1.|2Group t|
|000017a0| 65 72 6d 73 11 31 12 30 | 13 0d 0a 00 0d 0b 00 20 |erms.1.0|....... |
|000017b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000017c0| 20 20 20 20 20 20 20 11 | 32 33 0d 0b 00 20 20 20 | .|23... |
|000017d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000017e0| 20 11 31 3d 20 32 11 33 | 79 20 11 31 28 11 33 79 | .1= 2.3|y .1(.3y|
|000017f0| 20 11 31 2d 20 34 29 20 | 2b 20 33 28 11 33 79 20 | .1- 4) |+ 3(.3y |
|00001800| 11 31 2d 20 34 29 20 20 | 20 20 20 20 20 20 20 20 |.1- 4) | |
|00001810| 20 20 20 12 31 11 32 46 | 61 63 74 6f 72 20 67 72 | .1.2F|actor gr|
|00001820| 6f 75 70 73 11 31 12 30 | 13 0d 0a 00 0d 0b 00 20 |oups.1.0|....... |
|00001830| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001840| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001850| 32 33 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |23... | |
|00001860| 20 20 20 20 20 20 20 20 | 20 11 31 3d 20 28 11 33 | | .1= (.3|
|00001870| 79 20 11 31 2d 20 34 29 | 28 32 11 33 79 20 20 11 |y .1- 4)|(2.3y .|
|00001880| 31 2b 20 33 29 20 20 20 | 20 20 20 20 20 20 20 20 |1+ 3) | |
|00001890| 20 20 20 20 20 20 20 12 | 31 11 32 52 65 6d 6f 76 | .|1.2Remov|
|000018a0| 65 20 63 6f 6d 6d 6f 6e | 20 66 61 63 74 6f 72 11 |e common| factor.|
|000018b0| 31 12 30 0d 0a 00 53 65 | 63 74 69 6f 6e 20 50 2e |1.0...Se|ction P.|
|000018c0| 34 20 20 46 61 63 74 6f | 72 69 6e 67 0d 0b 00 20 |4 Facto|ring... |
|000018d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000018e0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 11 31 46 61 | .2|2....1Fa|
|000018f0| 63 74 6f 72 20 74 68 65 | 20 74 72 69 6e 6f 6d 69 |ctor the| trinomi|
|00001900| 61 6c 20 36 11 33 78 20 | 20 11 31 2d 20 11 33 78 |al 6.3x | .1- .3x|
|00001910| 20 11 31 2d 20 31 35 20 | 62 79 20 67 72 6f 75 70 | .1- 15 |by group|
|00001920| 69 6e 67 2e 0d 0a 00 0d | 0b 00 13 12 31 53 4f 4c |ing.....|....1SOL|
|00001930| 55 54 49 4f 4e 12 30 0d | 0a 00 0d 0b 00 46 6f 72 |UTION.0.|.....For|
|00001940| 20 74 68 69 73 20 74 72 | 69 6e 6f 6d 69 61 6c 20 | this tr|inomial |
|00001950| 77 65 20 68 61 76 65 20 | 11 33 61 20 11 31 3d 20 |we have |.3a .1= |
|00001960| 36 20 61 6e 64 20 11 33 | 63 20 11 31 3d 20 2d 31 |6 and .3|c .1= -1|
|00001970| 35 2c 20 77 68 69 63 68 | 20 69 6d 70 6c 69 65 73 |5, which| implies|
|00001980| 20 74 68 61 74 20 74 68 | 65 20 70 72 6f 64 75 63 | that th|e produc|
|00001990| 74 0d 0a 00 11 33 61 63 | 20 11 31 3d 20 2d 39 30 |t....3ac| .1= -90|
|000019a0| 2e 13 0d 0a 00 0d 0b 00 | 4e 6f 77 20 77 65 20 6e |........|Now we n|
|000019b0| 65 65 64 20 74 6f 20 66 | 69 6e 64 20 66 61 63 74 |eed to f|ind fact|
|000019c0| 6f 72 73 20 6f 66 20 2d | 39 30 20 77 68 6f 73 65 |ors of -|90 whose|
|000019d0| 20 73 75 6d 20 69 73 20 | 11 33 62 20 11 31 3d 20 | sum is |.3b .1= |
|000019e0| 2d 31 2e 13 0d 0a 00 42 | 65 63 61 75 73 65 20 2d |-1.....B|ecause -|
|000019f0| 39 30 20 66 61 63 74 6f | 72 73 20 61 73 20 28 39 |90 facto|rs as (9|
|00001a00| 29 28 2d 31 30 29 20 61 | 6e 64 20 39 20 2d 20 31 |)(-10) a|nd 9 - 1|
|00001a10| 30 20 3d 20 2d 31 20 3d | 20 11 33 62 11 31 2c 20 |0 = -1 =| .3b.1, |
|00001a20| 77 65 20 72 65 77 72 69 | 74 65 20 74 68 65 20 6d |we rewri|te the m|
|00001a30| 69 64 64 6c 65 0d 0a 00 | 74 65 72 6d 20 6f 66 20 |iddle...|term of |
|00001a40| 74 68 65 20 74 72 69 6e | 6f 6d 69 61 6c 20 61 73 |the trin|omial as|
|00001a50| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001a60| 20 20 2d 11 33 78 20 11 | 31 3d 20 39 11 33 78 20 | -.3x .|1= 9.3x |
|00001a70| 11 31 2d 20 31 30 11 33 | 78 11 31 2e 13 0d 0a 00 |.1- 10.3|x.1.....|
|00001a80| 0d 0b 00 54 68 69 73 20 | 70 72 6f 64 75 63 65 73 |...This |produces|
|00001a90| 20 74 68 65 20 66 6f 6c | 6c 6f 77 69 6e 67 2e 0d | the fol|lowing..|
|00001aa0| 0a 00 20 20 20 20 20 20 | 20 11 32 32 20 20 20 20 |.. | .22 |
|00001ab0| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0b 00 20 20 | | 2... |
|00001ac0| 20 20 20 11 31 36 11 33 | 78 20 20 11 31 2d 20 11 | .16.3|x .1- .|
|00001ad0| 33 78 20 11 31 2d 20 31 | 35 20 3d 20 36 11 33 78 |3x .1- 1|5 = 6.3x|
|00001ae0| 20 20 11 31 2b 20 39 11 | 33 78 20 11 31 2d 20 31 | .1+ 9.|3x .1- 1|
|00001af0| 30 11 33 78 20 11 31 2d | 20 31 35 20 20 20 20 20 |0.3x .1-| 15 |
|00001b00| 20 20 20 20 12 31 11 32 | 52 65 77 72 69 74 65 20 | .1.2|Rewrite |
|00001b10| 6d 69 64 64 6c 65 20 74 | 65 72 6d 11 31 12 30 13 |middle t|erm.1.0.|
|00001b20| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001b30| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 0d 0b 00 | | .22...|
|00001b40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b50| 20 20 11 31 3d 20 28 36 | 11 33 78 20 20 11 31 2b | .1= (6|.3x .1+|
|00001b60| 20 39 11 33 78 11 31 29 | 20 2d 20 28 31 30 11 33 | 9.3x.1)| - (10.3|
|00001b70| 78 20 11 31 2b 20 31 35 | 29 20 20 20 20 20 12 31 |x .1+ 15|) .1|
|00001b80| 11 32 47 72 6f 75 70 20 | 74 65 72 6d 73 11 31 12 |.2Group |terms.1.|
|00001b90| 30 13 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |0.......| |
|00001ba0| 20 20 20 20 20 20 20 20 | 20 20 3d 20 33 11 33 78 | | = 3.3x|
|00001bb0| 11 31 28 32 11 33 78 20 | 11 31 2b 20 33 29 20 2d |.1(2.3x |.1+ 3) -|
|00001bc0| 20 35 28 32 11 33 78 20 | 11 31 2b 20 33 29 20 20 | 5(2.3x |.1+ 3) |
|00001bd0| 20 20 20 20 12 31 11 32 | 46 61 63 74 6f 72 20 67 | .1.2|Factor g|
|00001be0| 72 6f 75 70 73 11 31 12 | 30 13 0d 0a 00 0d 0b 00 |roups.1.|0.......|
|00001bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001c00| 20 20 3d 20 28 32 11 33 | 78 20 11 31 2b 20 33 29 | = (2.3|x .1+ 3)|
|00001c10| 28 33 11 33 78 20 11 31 | 2d 20 35 29 20 20 20 20 |(3.3x .1|- 5) |
|00001c20| 20 20 20 20 20 20 20 20 | 12 31 11 32 52 65 6d 6f | |.1.2Remo|
|00001c30| 76 65 20 63 6f 6d 6d 6f | 6e 20 62 69 6e 6f 6d 69 |ve commo|n binomi|
|00001c40| 61 6c 20 66 61 63 74 6f | 72 11 31 12 30 0d 0a 00 |al facto|r.1.0...|
|00001c50| 53 65 63 74 69 6f 6e 20 | 50 2e 34 20 20 46 61 63 |Section |P.4 Fac|
|00001c60| 74 6f 72 69 6e 67 0d 0b | 00 46 61 63 74 6f 72 20 |toring..|.Factor |
|00001c70| 74 68 65 20 66 6f 6c 6c | 6f 77 69 6e 67 20 70 6f |the foll|owing po|
|00001c80| 6c 79 6e 6f 6d 69 61 6c | 73 2e 0d 0a 00 0d 0b 00 |lynomial|s.......|
|00001c90| 20 20 20 20 20 20 11 32 | 33 20 20 20 11 31 31 20 | .2|3 .11 |
|00001ca0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001cb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001cc0| 20 20 11 32 33 0d 0b 00 | 11 31 28 61 29 20 20 11 | .23...|.1(a) .|
|00001cd0| 33 78 20 20 11 31 2d 20 | 11 34 32 20 20 20 20 20 |3x .1- |.42 |
|00001ce0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001cf0| 11 31 28 62 29 20 20 32 | 37 20 2b 20 31 32 35 11 |.1(b) 2|7 + 125.|
|00001d00| 33 79 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 11 |3y... | .|
|00001d10| 31 38 0d 0a 00 0d 0b 00 | 13 12 31 53 4f 4c 55 54 |18......|..1SOLUT|
|00001d20| 49 4f 4e 12 30 0d 0a 00 | 20 20 20 20 20 20 20 20 |ION.0...| |
|00001d30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d60| 20 20 20 11 32 33 0d 0b | 00 11 31 61 29 20 54 68 | .23..|..1a) Th|
|00001d70| 69 73 20 70 6f 6c 79 6e | 6f 6d 69 61 6c 20 69 73 |is polyn|omial is|
|00001d80| 20 74 68 65 20 64 69 66 | 66 65 72 65 6e 63 65 20 | the dif|ference |
|00001d90| 6f 66 20 74 77 6f 20 63 | 75 62 65 73 20 62 65 63 |of two c|ubes bec|
|00001da0| 61 75 73 65 20 11 33 78 | 20 20 11 31 69 73 20 74 |ause .3x| .1is t|
|00001db0| 68 65 20 63 75 62 65 20 | 6f 66 20 11 33 78 11 31 |he cube |of .3x.1|
|00001dc0| 2c 0d 0a 00 20 20 20 61 | 6e 64 20 31 2f 38 20 69 |,... a|nd 1/8 i|
|00001dd0| 73 20 74 68 65 20 63 75 | 62 65 20 6f 66 20 31 2f |s the cu|be of 1/|
|00001de0| 32 2e 13 0d 0a 00 0d 0b | 00 20 20 20 54 68 65 72 |2.......|. Ther|
|00001df0| 65 66 6f 72 65 2c 20 77 | 65 20 63 61 6e 20 66 61 |efore, w|e can fa|
|00001e00| 63 74 6f 72 20 74 68 65 | 20 70 6f 6c 79 6e 6f 6d |ctor the| polynom|
|00001e10| 69 61 6c 20 61 73 20 66 | 6f 6c 6c 6f 77 73 2e 0d |ial as f|ollows..|
|00001e20| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 11 32 |..... | .2|
|00001e30| 33 20 20 20 11 31 31 20 | 20 20 20 11 32 33 20 20 |3 .11 | .23 |
|00001e40| 20 11 34 28 11 31 31 11 | 34 29 11 32 33 0d 0b 00 | .4(.11.|4).23...|
|00001e50| 20 20 20 20 20 20 20 20 | 11 33 78 20 20 11 31 2d | |.3x .1-|
|00001e60| 20 11 34 32 20 11 31 3d | 20 11 33 78 20 20 11 31 | .42 .1=| .3x .1|
|00001e70| 2d 20 11 34 21 32 21 20 | 20 20 20 20 20 20 20 20 |- .4!2! | |
|00001e80| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 12 31 11 | | .1.1.|
|00001e90| 32 57 72 69 74 65 20 61 | 73 20 64 69 66 66 65 72 |2Write a|s differ|
|00001ea0| 65 6e 63 65 20 6f 66 20 | 74 77 6f 20 63 75 62 65 |ence of |two cube|
|00001eb0| 73 11 31 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |s.1.0...| |
|00001ec0| 20 20 20 20 20 38 20 20 | 20 20 20 20 20 20 11 34 | 8 | .4|
|00001ed0| 39 11 31 32 11 34 30 20 | 20 20 20 20 20 20 20 20 |9.12.40 | |
|00001ee0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ef0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f10| 20 11 31 13 0d 0a 00 20 | 20 20 20 20 20 20 20 20 | .1.... | |
|00001f20| 20 20 20 20 20 20 20 20 | 11 34 28 20 20 20 20 11 | |.4( .|
|00001f30| 31 31 11 34 29 28 20 11 | 32 32 20 20 20 11 31 31 |11.4)( .|22 .11|
|00001f40| 20 20 20 20 11 34 28 11 | 31 31 11 34 29 11 32 32 | .4(.|11.4).22|
|00001f50| 11 34 29 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |.4)... | |
|00001f60| 20 20 20 20 20 11 31 3d | 20 11 34 21 11 33 78 20 | .1=| .4!.3x |
|00001f70| 11 31 2d 20 11 34 32 21 | 21 11 33 78 20 20 11 31 |.1- .42!|!.3x .1|
|00001f80| 2b 20 11 34 32 11 33 78 | 20 11 31 2b 20 11 34 21 |+ .42.3x| .1+ .4!|
|00001f90| 32 21 20 21 20 20 20 20 | 20 11 31 12 31 11 32 46 |2! ! | .1.1.2F|
|00001fa0| 61 63 74 6f 72 65 64 20 | 66 6f 72 6d 11 31 12 30 |actored |form.1.0|
|00001fb0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001fc0| 20 20 20 20 11 34 39 20 | 20 20 20 11 31 32 11 34 | .49 | .12.4|
|00001fd0| 30 39 20 20 20 20 20 11 | 31 32 20 20 20 20 11 34 |09 .|12 .4|
|00001fe0| 39 11 31 32 11 34 30 20 | 30 20 20 20 20 20 20 20 |9.12.40 |0 |
|00001ff0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002000| 20 11 31 13 0d 0a 00 20 | 20 20 20 20 20 20 20 20 | .1.... | |
|00002010| 20 20 20 20 20 20 20 20 | 11 34 28 20 20 20 20 11 | |.4( .|
|00002020| 31 31 11 34 29 28 20 11 | 32 32 20 20 20 11 31 31 |11.4)( .|22 .11|
|00002030| 20 20 20 20 31 11 34 29 | 0d 0b 00 20 20 20 20 20 | 1.4)|... |
|00002040| 20 20 20 20 20 20 20 20 | 20 20 11 31 3d 20 11 34 | | .1= .4|
|00002050| 21 11 33 78 20 11 31 2d | 20 11 34 32 21 21 11 33 |!.3x .1-| .42!!.3|
|00002060| 78 20 20 11 31 2b 20 11 | 34 32 11 33 78 20 11 31 |x .1+ .|42.3x .1|
|00002070| 2b 20 11 34 32 21 20 20 | 20 20 20 20 20 20 11 31 |+ .42! | .1|
|00002080| 12 31 11 32 53 69 6d 70 | 6c 69 66 79 11 31 12 30 |.1.2Simp|lify.1.0|
|00002090| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000020a0| 20 20 20 20 11 34 39 20 | 20 20 20 11 31 32 11 34 | .49 | .12.4|
|000020b0| 30 39 20 20 20 20 20 11 | 31 32 20 20 20 20 34 11 |09 .|12 4.|
|000020c0| 34 30 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |40 | |
|000020d0| 20 20 20 20 20 20 20 20 | 11 31 13 0d 0a 00 0d 0b | |.1......|
|000020e0| 00 62 29 20 54 68 69 73 | 20 70 6f 6c 79 6e 6f 6d |.b) This| polynom|
|000020f0| 69 61 6c 20 69 73 20 74 | 68 65 20 73 75 6d 20 6f |ial is t|he sum o|
|00002100| 66 20 74 77 6f 20 63 75 | 62 65 73 20 62 65 63 61 |f two cu|bes beca|
|00002110| 75 73 65 20 32 37 20 69 | 73 20 74 68 65 20 63 75 |use 27 i|s the cu|
|00002120| 62 65 20 6f 66 20 33 2c | 20 61 6e 64 0d 0a 00 20 |be of 3,| and... |
|00002130| 20 20 20 20 20 20 11 32 | 33 0d 0b 00 20 20 20 11 | .2|3... .|
|00002140| 31 31 32 35 11 33 79 20 | 20 11 31 69 73 20 74 68 |1125.3y | .1is th|
|00002150| 65 20 63 75 62 65 20 6f | 66 20 35 11 33 79 11 31 |e cube o|f 5.3y.1|
|00002160| 2e 0d 0a 00 0d 0b 00 20 | 20 20 54 68 65 72 65 66 |....... | Theref|
|00002170| 6f 72 65 2c 20 77 65 20 | 63 61 6e 20 66 61 63 74 |ore, we |can fact|
|00002180| 6f 72 20 74 68 65 20 70 | 6f 6c 79 6e 6f 6d 69 61 |or the p|olynomia|
|00002190| 6c 20 61 73 20 66 6f 6c | 6c 6f 77 73 2e 0d 0a 00 |l as fol|lows....|
|000021a0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000021b0| 20 11 32 33 20 20 20 20 | 33 20 20 20 20 20 20 20 | .23 |3 |
|000021c0| 33 0d 0b 00 20 20 20 20 | 20 11 31 32 37 20 2b 20 |3... | .127 + |
|000021d0| 31 32 35 11 33 79 20 20 | 11 31 3d 20 33 20 20 2b |125.3y |.1= 3 +|
|000021e0| 20 28 35 11 33 79 11 31 | 29 20 20 20 20 20 20 20 | (5.3y.1|) |
|000021f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 12 | | .|
|00002200| 31 11 32 57 72 69 74 65 | 20 61 73 20 74 68 65 20 |1.2Write| as the |
|00002210| 73 75 6d 20 6f 66 20 74 | 77 6f 20 63 75 62 65 73 |sum of t|wo cubes|
|00002220| 11 31 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |.1.0... | |
|00002230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002240| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002260| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002270| 20 20 20 20 20 20 20 13 | 0d 0a 00 20 20 20 20 20 | .|... |
|00002280| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002290| 20 20 20 20 20 11 34 28 | 20 11 32 32 20 20 20 20 | .4(| .22 |
|000022a0| 20 20 20 20 20 20 20 20 | 20 20 20 32 11 34 29 0d | | 2.4).|
|000022b0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000022c0| 20 20 11 31 3d 20 28 33 | 20 2b 20 35 11 33 79 11 | .1= (3| + 5.3y.|
|000022d0| 31 29 11 34 21 11 31 33 | 20 20 2d 20 33 28 35 11 |1).4!.13| - 3(5.|
|000022e0| 33 79 11 31 29 20 2b 20 | 28 35 11 33 79 11 31 29 |3y.1) + |(5.3y.1)|
|000022f0| 20 11 34 21 20 20 20 11 | 31 12 31 11 32 46 61 63 | .4! .|1.1.2Fac|
|00002300| 74 6f 72 65 64 20 66 6f | 72 6d 11 31 12 30 0d 0b |tored fo|rm.1.0..|
|00002310| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00002320| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 39 20 20 | | .49 |
|00002330| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002340| 30 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |0 | |
|00002350| 20 20 20 20 20 20 20 11 | 31 13 0d 0a 00 20 20 20 | .|1.... |
|00002360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002370| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002380| 20 20 20 20 20 11 32 32 | 0d 0b 00 20 20 20 20 20 | .22|... |
|00002390| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 3d 20 28 | | .1= (|
|000023a0| 33 20 2b 20 35 11 33 79 | 11 31 29 28 39 20 2d 20 |3 + 5.3y|.1)(9 - |
|000023b0| 31 35 11 33 79 20 11 31 | 2b 20 32 35 11 33 79 20 |15.3y .1|+ 25.3y |
|000023c0| 11 31 29 20 20 20 20 20 | 20 20 12 31 11 32 53 69 |.1) | .1.2Si|
|000023d0| 6d 70 6c 69 66 79 11 31 | 12 30 0d 0a 00 53 65 63 |mplify.1|.0...Sec|
|000023e0| 74 69 6f 6e 20 50 2e 34 | 20 20 46 61 63 74 6f 72 |tion P.4| Factor|
|000023f0| 69 6e 67 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |ing... | |
|00002400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00002410| 33 20 20 20 20 20 20 32 | 0d 0b 00 11 31 46 61 63 |3 2|....1Fac|
|00002420| 74 6f 72 20 74 68 65 20 | 74 72 69 6e 6f 6d 69 61 |tor the |trinomia|
|00002430| 6c 20 2d 36 11 33 78 20 | 20 11 31 2b 20 31 35 11 |l -6.3x | .1+ 15.|
|00002440| 33 78 20 20 11 31 2b 20 | 33 36 11 33 78 20 11 31 |3x .1+ |36.3x .1|
|00002450| 63 6f 6d 70 6c 65 74 65 | 6c 79 2e 0d 0a 00 0d 0b |complete|ly......|
|00002460| 00 13 12 31 53 4f 4c 55 | 54 49 4f 4e 12 30 0d 0a |...1SOLU|TION.0..|
|00002470| 00 0d 0b 00 42 65 63 61 | 75 73 65 20 74 68 69 73 |....Beca|use this|
|00002480| 20 74 72 69 6e 6f 6d 69 | 61 6c 20 68 61 73 20 61 | trinomi|al has a|
|00002490| 20 6e 65 67 61 74 69 76 | 65 20 6c 65 61 64 69 6e | negativ|e leadin|
|000024a0| 67 20 63 6f 65 66 66 69 | 63 69 65 6e 74 2c 20 77 |g coeffi|cient, w|
|000024b0| 65 20 62 65 67 69 6e 20 | 62 79 20 0d 0a 00 66 61 |e begin |by ...fa|
|000024c0| 63 74 6f 72 69 6e 67 20 | 6f 75 74 20 74 68 65 20 |ctoring |out the |
|000024d0| 28 6e 65 67 61 74 69 76 | 65 29 20 63 6f 6d 6d 6f |(negativ|e) commo|
|000024e0| 6e 20 6d 6f 6e 6f 6d 69 | 61 6c 20 66 61 63 74 6f |n monomi|al facto|
|000024f0| 72 20 2d 33 11 33 78 11 | 31 2e 0d 0a 00 20 20 20 |r -3.3x.|1.... |
|00002500| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 33 20 20 | | .23 |
|00002510| 20 20 20 20 32 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00002520| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | 2...| |
|00002530| 20 20 20 11 31 2d 36 11 | 33 78 20 20 11 31 2b 20 | .1-6.|3x .1+ |
|00002540| 31 35 11 33 78 20 20 11 | 31 2b 20 33 36 11 33 78 |15.3x .|1+ 36.3x|
|00002550| 20 11 31 3d 20 2d 33 11 | 33 78 11 31 28 32 11 33 | .1= -3.|3x.1(2.3|
|00002560| 78 20 20 11 31 2d 20 35 | 11 33 78 20 11 31 2d 20 |x .1- 5|.3x .1- |
|00002570| 31 32 29 13 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |12).....|.. |
|00002580| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002590| 20 20 20 20 20 20 20 11 | 32 32 0d 0b 00 11 31 4e | .|22....1N|
|000025a0| 6f 77 2c 20 66 6f 72 20 | 74 68 65 20 6e 65 77 20 |ow, for |the new |
|000025b0| 74 72 69 6e 6f 6d 69 61 | 6c 20 32 11 33 78 20 20 |trinomia|l 2.3x |
|000025c0| 11 31 2d 20 35 11 33 78 | 20 11 31 2d 20 31 32 2c |.1- 5.3x| .1- 12,|
|000025d0| 20 77 65 20 68 61 76 65 | 20 11 33 61 20 11 31 3d | we have| .3a .1=|
|000025e0| 20 32 20 61 6e 64 20 11 | 33 63 20 11 31 3d 20 2d | 2 and .|3c .1= -|
|000025f0| 31 32 2e 13 0d 0a 00 54 | 68 65 20 70 6f 73 73 69 |12.....T|he possi|
|00002600| 62 6c 65 20 66 61 63 74 | 6f 72 69 7a 61 74 69 6f |ble fact|orizatio|
|00002610| 6e 73 20 6f 66 20 74 68 | 69 73 20 74 72 69 6e 6f |ns of th|is trino|
|00002620| 6d 69 61 6c 20 61 72 65 | 20 61 73 20 66 6f 6c 6c |mial are| as foll|
|00002630| 6f 77 73 2e 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |ows.... | |
|00002640| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002650| 20 20 20 20 20 20 20 20 | 11 32 32 0d 0b 00 20 20 | |.22... |
|00002660| 20 20 20 20 20 20 20 20 | 20 20 11 31 28 32 11 33 | | .1(2.3|
|00002670| 78 20 11 31 2b 20 31 29 | 28 11 33 78 20 11 31 2d |x .1+ 1)|(.3x .1-|
|00002680| 20 31 32 29 20 3d 20 32 | 11 33 78 20 20 11 31 2d | 12) = 2|.3x .1-|
|00002690| 20 32 33 11 33 78 20 11 | 31 2d 20 31 32 13 0d 0a | 23.3x .|1- 12...|
|000026a0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000026b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026c0| 20 20 11 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | .22...| |
|000026d0| 20 20 20 20 20 11 31 28 | 32 11 33 78 20 11 31 2b | .1(|2.3x .1+|
|000026e0| 20 33 29 28 11 33 78 20 | 11 31 2d 20 34 29 20 3d | 3)(.3x |.1- 4) =|
|000026f0| 20 32 11 33 78 20 20 11 | 31 2d 20 35 11 33 78 20 | 2.3x .|1- 5.3x |
|00002700| 11 31 2d 20 31 32 20 20 | 20 20 20 20 20 12 31 11 |.1- 12 | .1.|
|00002710| 32 43 6f 72 72 65 63 74 | 20 66 61 63 74 6f 72 69 |2Correct| factori|
|00002720| 7a 61 74 69 6f 6e 11 31 | 12 30 13 0d 0a 00 0d 0a |zation.1|.0......|
|00002730| 00 54 68 65 72 65 66 6f | 72 65 2c 20 74 68 65 20 |.Therefo|re, the |
|00002740| 63 6f 6d 70 6c 65 74 65 | 6c 79 20 66 61 63 74 6f |complete|ly facto|
|00002750| 72 65 64 20 66 6f 72 6d | 20 6f 66 20 74 68 65 20 |red form| of the |
|00002760| 6f 72 69 67 69 6e 61 6c | 20 74 72 69 6e 6f 6d 69 |original| trinomi|
|00002770| 61 6c 20 69 73 0d 0a 00 | 20 20 20 20 20 20 20 20 |al is...| |
|00002780| 20 20 20 20 20 20 11 32 | 33 20 20 20 20 20 20 32 | .2|3 2|
|00002790| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 | | 2|
|000027a0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 11 31 |... | .1|
|000027b0| 2d 36 11 33 78 20 20 11 | 31 2b 20 31 35 11 33 78 |-6.3x .|1+ 15.3x|
|000027c0| 20 20 11 31 2b 20 33 36 | 11 33 78 20 11 31 3d 20 | .1+ 36|.3x .1= |
|000027d0| 2d 33 11 33 78 11 31 28 | 32 11 33 78 20 20 11 31 |-3.3x.1(|2.3x .1|
|000027e0| 2d 20 35 11 33 78 20 11 | 31 2d 20 31 32 29 20 3d |- 5.3x .|1- 12) =|
|000027f0| 20 2d 33 11 33 78 11 31 | 28 32 11 33 78 20 11 31 | -3.3x.1|(2.3x .1|
|00002800| 2b 20 33 29 28 11 33 78 | 20 11 31 2d 20 34 29 2e |+ 3)(.3x| .1- 4).|
|00002810| 0d 0a 00 26 00 00 00 a8 | 02 00 00 4d 16 00 00 10 |...&....|...M....|
|00002820| 00 00 00 00 00 00 00 65 | 30 2d 34 00 e4 02 00 00 |.......e|0-4.....|
|00002830| bb 03 00 00 4d 16 00 00 | ce 02 00 00 00 00 00 00 |....M...|........|
|00002840| 65 30 2d 34 2d 31 00 b5 | 06 00 00 a1 03 00 00 4d |e0-4-1..|.......M|
|00002850| 16 00 00 9f 06 00 00 00 | 00 00 00 65 30 2d 34 2d |........|...e0-4-|
|00002860| 32 00 6c 0a 00 00 d9 02 | 00 00 4d 16 00 00 56 0a |2.l.....|..M...V.|
|00002870| 00 00 00 00 00 00 65 30 | 2d 34 2d 33 00 5b 0d 00 |......e0|-4-3.[..|
|00002880| 00 06 03 00 00 4d 16 00 | 00 45 0d 00 00 00 00 00 |.....M..|.E......|
|00002890| 00 65 30 2d 34 2d 34 00 | 77 10 00 00 df 02 00 00 |.e0-4-4.|w.......|
|000028a0| 4d 16 00 00 61 10 00 00 | 00 00 00 00 65 30 2d 34 |M...a...|....e0-4|
|000028b0| 2d 35 00 6c 13 00 00 45 | 03 00 00 4d 16 00 00 56 |-5.l...E|...M...V|
|000028c0| 13 00 00 00 00 00 00 65 | 30 2d 34 2d 36 00 c7 16 |.......e|0-4-6...|
|000028d0| 00 00 ef 01 00 00 4d 16 | 00 00 b1 16 00 00 00 00 |......M.|........|
|000028e0| 00 00 65 30 2d 34 2d 37 | 00 cc 18 00 00 84 03 00 |..e0-4-7|........|
|000028f0| 00 4d 16 00 00 b6 18 00 | 00 00 00 00 00 65 30 2d |.M......|.....e0-|
|00002900| 34 2d 38 00 66 1c 00 00 | 77 07 00 00 4d 16 00 00 |4-8.f...|w...M...|
|00002910| 50 1c 00 00 00 00 00 00 | 69 30 2d 34 2d 31 00 f3 |P.......|i0-4-1..|
|00002920| 23 00 00 20 04 00 00 4d | 16 00 00 dd 23 00 00 00 |#.. ...M|....#...|
|00002930| 00 00 00 69 30 2d 34 2d | 32 00 |...i0-4-|2. |
+--------+-------------------------+-------------------------+--------+--------+